16 research outputs found

    Trajectory optimization for target localization using small unmanned aerial vehicles

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.Includes bibliographical references (p. 189-197).Small unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance missions. One particular mission of interest involves computing location estimates for targets detected by onboard sensors. Combining UAV state estimates with information gathered by the imaging sensors leads to bearing measurements of the target that can be used to determine the target's location. This 3-D bearings-only estimation problem is nonlinear and traditional filtering methods produce biased and uncertain estimates, occasionally leading to filter instabilities. Careful selection of the measurement locations greatly enhances filter performance, motivating the development of UAV trajectories that minimize target location estimation error and improve filter convergence. The objective of this work is to develop guidance algorithms that enable the UAV to fly trajectories that increase the amount of information provided by the measurements and improve overall estimation observability, resulting in proper target tracking and an accurate target location estimate. The performance of the target estimation is dependent upon the positions from which measurements are taken relative to the target and to previous measurements. Past research has provided methods to quantify the information content of a set of measurements using the Fisher Information Matrix (FIM). Forming objective functions based on the FIM and using numerical optimization methods produce UAV trajectories that locally maximize the information content for a given number of measurements. In this project, trajectory optimization leads to the development of UAV flight paths that provide the highest amount of information about the target, while considering sensor restrictions, vehicle dynamics and operation constraints.(cont.) The UAV trajectory optimization is performed for stationary targets, dynamic targets and multiple targets, for many different scenarios of vehicle motion constraints. The resulting trajectories show spiral paths taken by the UAV, which focus on increasing the angular separation between measurements and reducing the relative range to the target, thus maximizing the information provided by each measurement and improving the performance of the estimation. The main drawback of information based trajectory design is the dependence of the Fisher Information Matrix on the true target location. This issue is addressed in this project by executing simultaneous target location estimation and UAV trajectory optimization. Two estimation algorithms, the Extended Kalman Filter and the Particle Filter are considered, and the trajectory optimization is performed using the mean value of the target estimation in lieu of the true target location. The estimation and optimization algorithms run in sequence and are updated in real-time. The results show spiral UAV trajectories that increase filter convergence and overall estimation accuracy, illustrating the importance of information-based trajectory design for target localization using small UAVs.by Sameera S. Ponda.S.M

    Robust distributed planning strategies for autonomous multi-agent teams

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from department-submitted PDF version of thesis. This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 225-244).The increased use of autonomous robotic agents, such as unmanned aerial vehicles (UAVs) and ground rovers, for complex missions has motivated the development of autonomous task allocation and planning methods that ensure spatial and temporal coordination for teams of cooperating agents. The basic problem can be formulated as a combinatorial optimization (mixed-integer program) involving nonlinear and time-varying system dynamics. For most problems of interest, optimal solution methods are computationally intractable (NP-Hard), and centralized planning approaches, which usually require high bandwidth connections with a ground station (e.g. to transmit received sensor data, and to dispense agent plans), are resource intensive and react slowly to local changes in dynamic environments. Distributed approximate algorithms, where agents plan individually and coordinate with each other locally through consensus protocols, can alleviate many of these issues and have been successfully used to develop real-time conflict-free solutions for heterogeneous networked teams. An important issue associated with autonomous planning is that many of the algorithms rely on underlying system models and parameters which are often subject to uncertainty. This uncertainty can result from many sources including: inaccurate modeling due to simplifications, assumptions, and/or parameter errors; fundamentally nondeterministic processes (e.g. sensor readings, stochastic dynamics); and dynamic local information changes. As discrepancies between the planner models and the actual system dynamics increase, mission performance typically degrades. The impact of these discrepancies on the overall quality of the plan is usually hard to quantify in advance due to nonlinear effects, coupling between tasks and agents, and interdependencies between system constraints. However, if uncertainty models of planning parameters are available, they can be leveraged to create robust plans that explicitly hedge against the inherent uncertainty given allowable risk thresholds. This thesis presents real-time robust distributed planning strategies that can be used to plan for multi-agent networked teams operating in stochastic and dynamic environments. One class of distributed combinatorial planning algorithms involves using auction algorithms augmented with consensus protocols to allocate tasks amongst a team of agents while resolving conflicting assignments locally between the agents. A particular algorithm in this class is the Consensus-Based Bundle Algorithm (CBBA), a distributed auction protocol that guarantees conflict-free solutions despite inconsistencies in situational awareness across the team. CBBA runs in polynomial time, demonstrating good scalability with increasing numbers of agents and tasks. This thesis builds upon the CBBA framework to address many realistic considerations associated with planning for networked teams, including time-critical mission constraints, limited communication between agents, and stochastic operating environments. A particular focus of this work is a robust extension to CBBA that handles distributed planning in stochastic environments given probabilistic parameter models and different stochastic metrics. The Robust CBBA algorithm proposed in this thesis provides a distributed real-time framework which can leverage different stochastic metrics to hedge against parameter uncertainty. In mission scenarios where low probability of failure is required, a chance-constrained stochastic metric can be used to provide probabilistic guarantees on achievable mission performance given allowable risk thresholds. This thesis proposes a distributed chance-constrained approximation that can be used within the Robust CBBA framework, and derives constraints on individual risk allocations to guarantee equivalence between the centralized chance-constrained optimization and the distributed approximation. Different risk allocation strategies for homogeneous and heterogeneous teams are proposed that approximate the agent and mission score distributions a priori, and results are provided showing improved performance in time-critical mission scenarios given allowable risk thresholds.by Sameera S. Ponda.Ph.D

    Information-rich Task Allocation and Motion Planning for Heterogeneous Sensor Platforms

    Get PDF
    This paper introduces a novel stratified planning algorithm for teams of heterogeneous mobile sensors that maximizes information collection while minimizing resource costs. The main contribution of this work is the scalable unification of effective algorithms for de- centralized informative motion planning and decentralized high-level task allocation. We present the Information-rich Rapidly-exploring Random Tree (IRRT) algorithm, which is amenable to very general and realistic mobile sensor constraint characterizations, as well as review the Consensus-Based Bundle Algorithm (CBBA), offering several enhancements to the existing algorithms to embed information collection at each phase of the planning process. The proposed framework is validated with simulation results for networks of mobile sensors performing multi-target localization missions.United States. Air Force. Office of Scientific Research (Grant FA9550-08-1-0086)United States. Air Force. Office of Scientific Research. Multidisciplinary University Research Initiative (FA9550-08-1-0356

    Multi-UAV network control through dynamic task allocation: Ensuring data-rate and bit-error-rate support

    Get PDF
    A multi-UAV system relies on communications to operate. Failure to communicate remotely sensed mission data to the base may render the system ineffective, and the inability to exchange command and control messages can lead to system failures. This paper describes a unique method to control communications through distributed task allocation to engage under-utilized UAVs to serve as communication relays and to ensure that the network supports mission tasks. The distributed algorithm uses task assignment information, including task location and proposed execution time, to predict the network topology and plan support using relays. By explicitly coupling task assignment and relay creation processes the team is able to optimize the use of agents to address the needs of dynamic complex missions. The framework is designed to consider realistic network communication dynamics including path loss, stochastic fading, and information routing. The planning strategy is shown to ensure that agents support both datarate and interconnectivity bit-error-rate requirements during task execution. System performance is characterized through experiments both in simulation and in outdoor flight testing with a team of three UAVs.Aurora Flight Sciences Corp. (Fellowship Program

    Ensuring Network Connectivity for Decentralized Planning in Dynamic Environments

    Get PDF
    This work addresses the issue of network connectivity for a team of heterogeneous agents operating in a dynamic environment. The Consensus-Based Bundle Algorithm (CBBA), a distributed task allocation framework previously developed by the authors and their colleagues, is introduced as a methodology for complex mission planning, and extensions are proposed to address limited communication environments. In particular, CBBA with Relays leverages information available through already existing consensus phases to predict the network topology at select times and creates relay tasks to strengthen the connectivity of the network. By employing underutilized resources, the presented approach improves network connectivity without limiting the scope of the active agents, thus improving mission performance.United States. Air Force Office of Scientific Research (Grant FA9550-08-1-0086)United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (FA9550-08-1-0356

    Allowing non-submodular score functions in distributed task allocation

    Get PDF
    Submodularity is a powerful property that can be exploited for provable performance and convergence guarantees in distributed task allocation algorithms. However, some mission scenarios cannot easily be approximated as submodular a priori. This paper introduces an algorithmic extension for distributed multi-agent multi-task assignment algorithms which provides guaranteed convergence using non-submodular score functions. This algorithm utilizes non-submodular ranking of tasks within each agent's internal decision making process, while externally enforcing that shared bids appear as if they were created using submodular score functions. Provided proofs demonstrate that all convergence and performance guarantees hold with respect to this apparent submodular score function. The algorithm allows significant improvements over heuristic approaches that approximate truly non-submodular score functions.United States. Air Force Office of Scientific Research (Grant FA9550-11-1-0134

    The Blue Gene/P at Jülich : Introduction

    No full text
    This research presents a distributed chanceconstrained task allocation framework that can be used to plan for multi-agent networked teams operating in stochastic and dynamic environments. The algorithm employs an approximation strategy to convert centralized problem formulations into distributable sub-problems that can be solved by individual agents. A key component of the distributed approximation is a risk adjustment method that allocates individual agent risks based on a global risk threshold. The results show large improvements in distributed stochastic environments by explicitly accounting for uncertainty propagation during the task allocation process.United States. Air Force Office of Scientific Research (AFOSR FA9550- 08-1-0086)United States. Air Force Office of Scientific Research (Multidisciplinary University Research Initiative, FA9550-08-1-0356)
    corecore